3.1

INTRODUCTION

One of the simplest, useful and frequently used data structure for problem solving is the
stack. This chapter introduces such a data structure starting with the definition and the
various operations of stack. The implementation of stacks can be done either using
linear array structure or using list structures (with pointers). We will study the first one
in this chapter and the second in Chapter 6.
Since, stacks work on Last-In-First-Out (LIFO) policy and their applications include,
(i) Checking for parenthesis balancing in expressions.

(i) Postfix expression evaluation.

(iii) Infix-to-Postfix expression conversion.

(iv) Infix-to-Prefix expression conversion.
The algorithm and ‘C’ implementation for all the above applications will be developed
in this chapter.

3.2 DEFINITION

A stack is defined as a linear list in which insertions and deletions take place at the
same end. This end is called as the top of the stack and the other end is called as the
bottom of the stack.

According to the definition, new items may be inserted from top and the elements
are to be deleted from again top. This suggests that the elements inserted most recently

122

Chapter3 » Stacks

can only be deleted or removed. We can call such an operation as the last inserted
element comes out first. Hence, a stack works as Last In First Out (LIFO) manner.

Figure 3.1 shows a stack with five character type elements and these elements are
inserted in the order A, B, C, D and E.

Top —

>|wln]|o|m

« bottom

Fig.3.1 A Stack

The element E is at the top and element A is at the bottom. We shall also assume that
the stack elements are stored in an array with a maximum capacity or size. In fact, the
concept of stack is not new. Take for example the cupboard in your bedroom where
clothes are stacked (kept one over the other) or books stacked on your table, files
stacked on a clerk’s table, etc are some of the common items that are stacked.

3.2.1 Basic operations of Stack — Push and Pop

Having defined the stack data structure, this section describes two important operations
performed on a stack. We shall recall the definition of stack as that the elements are
generally inserted and deleted. These are the two important operations we need to do on
a stack and formally we call them as PUSH and POP. The push operation inserts an
element into a stack and pop operation removes an element from the top of the stack.
However, notice that only the top most element can be removed and one can not access
the other elements in the stack. Hence, to push and pop from the top of the stack, a
pointer is maintained called as top. Any insertion or deletion should be based upon the
value of rop.

Assuming a C like array to hold the stack elements, Figure 3.2 shows how a stack
grows and shrinks because of push and pop. When a stack does not contain any
elements such a state is called as empty stack.

3 3 3
2 2 2
1 1 Top—> | B |1
0 Top—> | A |0 AlO
Top =-1
(a) Empty Stack (b) Push A (c) Push B

Fig. 3.2 Stack operations

Fundamentals of Data Structures with C 123

3 3 3
Top— | C |2 2 Top— | D |2
B |1 Top— | B |1 Bl
AlO AlO AlO
(d) Push C (e) Pop () PushD
(C is popped)
3 3 3
2 2 2
Top— |B |1 1 1
A|O Top»> | A |0 0
Top =-1
(g) Pop (h) Pop (i) Pop

(D is popped) (B is popped) (A is popped)
Fig 3.2 Stack operations (contd)

Initially the stack is empty and is shown in Figure 3.2(a). Figures 3.2(b), (c) and (d)
show how Top is updated and stack grows upwards with elements A, B and C. Now,
the element C is at the Top. Figure 3.2(e) shows, when a pop operation is performed,
element C is removed from stack and Top points to B. This suggests that Top always
points to the filled, top most element. We add D so that contents of stack is A, B and D
(from bottom to top). Last three Figures (g), (h) and (i) show series of pop operations in
which D, B and A are all removed and finally the stack is empty.
An ADT specification can now be written for a stack and is shown in Figure 3.3.

ADT Stack {

specification:
Linear list of elements. Top is a pointer to
point to the top of the stack.

Operations:
Push(x) - Insert an element to the stack

pointed by Top
Pop() - Removes an element pointed by Top.
IsFull() - Returns true when the stack is full.
IsEmpty() - Returns true when the stack is
empty.

Fig. 3.3 ADT for a Stack

126 Chapter3)

3 3 3
2 2 2
1 1 Top— {20 1
0 Top— [10]0 100
Top = -
1
(a) Empty Stack (b) Push (s,10) (c) Push(s,20)
3 Top— |40 | 3 Top— |40 | 3
Top— | 30 |2 302 302
20 | 1 2011 2011
10 10 10]0 1010
(d) Push(s,30) (e) Push (s,40) (f) Push(s,50)
Overflow
Fig. 3.4 Push() snapshot.

3.3.3 Implementing Pop() Function

Stacks

An element may be popped (or removed) only when stack is not empty. Therefore, we
first check stack status (whether stack is empty or not) using a function Empty ().
When the stack is not empty, simply retrieve the element pointed by top and store it in
a temporary variable called temp. This is shown in Program 3.2.

Program 3.2
Pop fucntion

int Pop (Stack ps)
{
int temp;
if (Empty(ps)) /* underflow */
return(-1);

temp = ps->items[ps->top]; /* retrieve the element */

--(ps->top) ;
return (temp) ;

